Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.752
Filtrar
1.
Egypt J Immunol ; 31(2): 44-54, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615234

RESUMO

One of the most common neurological illnesses in the world is multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS). MS has both a genetic and an environmental origin. In terms of environmental factors, vitamin D deficiency is one of the most important risk factors and closely connected with gene polymorphisms involved in vitamin D metabolism, transport, or activity. Since vitamin D activity requires a receptor-mediated response, any changes to the vitamin D receptor (VDR) may have an effect on the pathophysiology of the disease. In this study, we aimed to identify the relationship between VDR gene polymorphisms, FokI A>G (rs2228570), ApaI A>C (rs7975232) and BsmI C>T (rs1544410) and MS. FokI, ApaI and BsmI genotypes were determined in 50 patients with relapsing remitting MS (RRMS) and in 50 control subjects. DNA was isolated from blood samples, and then FokI, ApaI and BsmI gene polymorphisms were identified using allelic discrimination real time polymerase chain reaction (PCR) assay. The distribution of FokI, ApaI and BsmI polymorphisms did not show any significant differences between MS patients and controls. Thus, we concluded that there is no association between the studied VDR gene polymorphisms and MS.


Assuntos
Esclerose Múltipla , Receptores de Calcitriol , Humanos , Egito/epidemiologia , Esclerose Múltipla/genética , Polimorfismo Genético , Receptores de Calcitriol/genética , Vitamina D/metabolismo , População do Norte da África/genética
2.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543036

RESUMO

Emerging evidence has demonstrated a strong correlation between vitamin D status and fatty liver disease. Aberrant hepatic fat infiltration contributes to oxidant overproduction, promoting metabolic dysfunction, and inflammatory responses. Vitamin D supplementation might be a good strategy for reducing hepatic lipid accumulation and inflammation in non-alcoholic fatty liver disease and its associated diseases. This study aimed to investigate the role of the most biologically active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), in hepatic fat accumulation and inflammation in palmitic acid (PA)-treated AML-12 hepatocytes. The results indicated that treatment with 1,25(OH)2D significantly decreased triglyceride contents, lipid peroxidation, and cellular damage. In addition, mRNA levels of apoptosis-associated speck-like CARD-domain protein (ASC), thioredoxin-interacting protein (TXNIP), NOD-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1ß (IL-1ß) involved in the NLRP3 inflammasome accompanied by caspase-1 activity and IL-1ß expression were significantly suppressed by 1,25(OH)2D in PA-treated hepatocytes. Moreover, upon PA exposure, 1,25(OH)2D-incubated AML-12 hepatocytes showed higher sirtulin 1 (SIRT1) expression and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. A SIRT1 inhibitor alleviated the beneficial effects of 1,25(OH)2D on PA-induced hepatic fat deposition, IL-1ß expression, and caspase-1 activity. These results suggest that the favorable effects of 1,25(OH)2D on hepatic fat accumulation and inflammation may be, at least in part, associated with the SIRT1.


Assuntos
Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Vitaminas/metabolismo , Ácido Palmítico/farmacologia , Caspases/metabolismo , Leucemia Mieloide Aguda/metabolismo
3.
Medicina (Kaunas) ; 60(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38541146

RESUMO

Vitamin D has important anti-inflammatory, anti-microbial properties and plays a central role in the host immune response. Due to the crucial role of the kidneys in the metabolism of vitamin D, patients with chronic kidney disease (CKD) are prone to vitamin D deficiency. The resultant reduction in the production of calcitriol, the activated form of vitamin D, in patients with CKD is responsible for exacerbating the existing renal impairment and periodontal inflammation. Recent evidence suggests a bidirectional, causal relationship between periodontitis and renal functional status. Both conditions have shared pathophysiological mechanisms including oxidative stress, increases in the systemic inflammatory burden and impaired host response. This review explores the association between vitamin D, CKD and periodontitis. The review summarises the current evidence base for the classical and non-classical vitamin D metabolic pathways, the biological mechanisms linking vitamin D deficiency, CKD and periodontitis, as well as the bidirectional relationship between the two chronic inflammatory conditions. Finally, the paper explores the impact of vitamin D deficiency on CKD, periodontitis, and related co-morbidities.


Assuntos
Periodontite , Insuficiência Renal Crônica , Deficiência de Vitamina D , Humanos , Deficiência de Vitamina D/complicações , Vitamina D/metabolismo , Insuficiência Renal Crônica/complicações , Doença Crônica , Periodontite/complicações
4.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473753

RESUMO

Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/metabolismo , Vitamina D/metabolismo , Receptores de Calcitriol/metabolismo , Linhagem Celular Tumoral , Neoplasias Cutâneas/patologia , Vitaminas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos , Proliferação de Células
5.
Biomed Pharmacother ; 173: 116402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471277

RESUMO

Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH)2D3 in ovariectomized mice (p <0.01). Moreover, OA upregulated CYP27B1 protein expression and activity, as well as the vitamin D-responsive bone markers alkaline phosphatase (ALP) activity and osteopontin (OPN) protein expression, in human osteoblast-like MG-63 cells (p<0.05). CYP27B1 expression increased along with the osteoblastic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). CYP27B1 expression and cellular 1,25(OH)2D3 production were further potentiated by OA in cells at mature osteogenic stages. Notably, our study suggested that the osteogenic actions of OA were CYP27B1 dependent. In summary, the bone protective effects of OA were associated with the induction of CYP27B1 activity and expression in bone tissues and osteoblastic lineages. Hence, OA might be a potential approach for management of age-related bone loss.


Assuntos
Anabolizantes , Ácido Oleanólico , Osteoporose , Vitamina D/análogos & derivados , Humanos , Animais , Camundongos , Idoso , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Ácido Oleanólico/farmacologia , Vitamina D/farmacologia , Vitamina D/metabolismo , Osso e Ossos/metabolismo , Vitaminas
6.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542424

RESUMO

Disease modifiers, whether from cancer, sepsis, systemic inflammation, or microbial pathogens, all appear to induce epithelial barrier leak, with induced changes of the Tight Junctional (TJ) complex being pivotal to the process. This leak-and the ensuant breakdown of compartmentation-plays a central role in disease morbidity on many levels. Accumulation of lung water in the luminal compartment of airways was a major driver of morbidity and mortality in COVID-19 and is an excellent example of the phenomenon. Increasing awareness of the ability of micronutrients to improve basal barrier function and reduce barrier compromise in pathophysiology may prove to be a low-cost, safe, and easily administered prophylactic and/or therapeutic option amenable to large populations. The growing appreciation of the clinical utility of supplemental doses of Vitamin D in COVID-19 is but one example. This narrative review is intended to propose a general theory on how and why micronutrients-at levels above normal dietary intake-successfully remodel TJs and improve barrier function. It discusses the key difference between dietary/Recommended Daily Allowance (RDA) levels of micronutrients versus supplemental levels, and why the latter are needed in disease situations. It advances a hypothesis for why signal transduction regulation of barrier function may require these higher supplemental doses to achieve the TJ remodeling and other barrier element changes that are clinically beneficial.


Assuntos
COVID-19 , Micronutrientes , Humanos , Micronutrientes/metabolismo , Junções Íntimas/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismo , COVID-19/metabolismo
7.
Exp Gerontol ; 189: 112408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521178

RESUMO

BACKGROUND: Active vitamin D analog eldecalcitol is clinically applied in treatment of postmenopausal osteoporosis. This study aims to determine the role of eldecalcitol in the protection of osteocytes from senescence and the associated ferroptosis. METHODS: The MLO-Y4 osteocytes were exposed to D-gal inducing senescence. The ovariectomized (OVX) mice treated with D-gal using as an aging inducer were intraperitoneally injected with eldecalcitol. The multiplexed confocal imaging, fluorescence in situ hybridization and transmission electron microscopy were applied in assessing osteocytic properties. Immunochemical staining and immunoblotting were carried out to detect abundance and expression of molecules. RESULTS: The ablation of vitamin D receptor led to a reduction in amounts of osteocytes, a loss of dendrites, an increase in mRNA expression of SASP factors and in protein expression of senescent factors, as well as changes in mRNA expression of ferroptosis-related genes (PTGS2 & RGS4). Eldecalcitol reversed senescent phenotypes of MLO-Y4 cells shown by improving cell morphology and density, decreasing ß-gal-positive cell accumulation, and down-regulating protein expression (P16, P21 & P53). Eldecalcitol reduced intracellular ROS and MDA productions, elevated JC-1 aggregates, and up-regulated expression of Nrf2 and GPX4. Eldecalcitol exhibited osteopreserve effects in D-gal-induced aging OVX mice. The confocal imaging displayed its improvement on osteocytic network organization. Eldecalcitol decreased the numbers of senescent osteocytes at tibial diaphysis by SADS assay and attenuated mRNA expression of SASP factors as well as down-regulated protein expression of senescence-related factors and restored levels of ferroptotic biomarkers in osteocytes-enriched bone fraction. It reduced 4-HNE staining area, stimulated Nrf2-positive staining, and promoted nuclear translocation of Nrf2 in osteocytes of mice as well as inhibited and promoted protein expression of 4-HNE and Nrf2, respectively, in osteocytes-enriched bone fraction. CONCLUSIONS: The present study revealed the ameliorative effects of eldecalcitol on senescence and the associated ferroptosis of osteocytes, contributing to its preservation against osteoporosis of D-gal-induced senescent ovariectomized mice.


Assuntos
Ferroptose , Osteócitos , Vitamina D/análogos & derivados , Camundongos , Animais , Osteócitos/metabolismo , Hibridização in Situ Fluorescente , Fator 2 Relacionado a NF-E2/metabolismo , Vitamina D/metabolismo , RNA Mensageiro/metabolismo
8.
Aging (Albany NY) ; 16(3): 2005-2025, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38329439

RESUMO

Adult stem cells are pivotal for maintaining tissue homeostasis, and their functional decline is linked to aging and its associated diseases, influenced by the niche cells' environment. Age- and cancer-related reduction of vitamin D and its receptor levels are well documented in human clinical studies. However, the mechanisms through which the vitamin D/vitamin D receptor pathway contributes to anti-aging and extends life expectancy are not well understood. In this study, we aimed to determine the protective role of the vitamin D/vitamin D receptor pathway in differentiated enterocytes (ECs) during intestinal stem cell (ISC) aging. By utilizing a well- established Drosophila midgut model for stem cell aging biology, we revealed that vitamin D receptor knockdown in ECs induced ISC proliferation, EC death, ISC aging, and enteroendocrine cell differentiation. Additionally, age- and oxidative stress-induced increases in ISC proliferation and centrosome amplification were reduced by vitamin D treatment. Our findings suggest a direct evidence of the anti-aging role of the vitamin D/vitamin D receptor pathway and provides insights into the molecular mechanisms underlying healthy aging in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/fisiologia , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Envelhecimento/metabolismo , Intestinos , Diferenciação Celular/fisiologia , Proliferação de Células , Drosophila melanogaster/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(8): e2302259121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38346204

RESUMO

Although evidence exists for a causal association between 25-hydroxyvitamin D (25(OH)D) serum levels, and multiple sclerosis (MS), the role of variation in vitamin D receptor (VDR) binding in MS is unknown. Here, we leveraged previously identified variants associated with allele imbalance in VDR binding (VDR-binding variant; VDR-BV) in ChIP-exo data from calcitriol-stimulated lymphoblastoid cell lines and 25(OH)D serum levels from genome-wide association studies to construct genetic instrumental variables (GIVs). GIVs are composed of one or more genetic variants that serve as proxies for exposures of interest. Here, GIVs for both VDR-BVs and 25(OH)D were used in a two-sample Mendelian Randomization study to investigate the relationship between VDR binding at a locus, 25(OH)D serum levels, and MS risk. Data for 13,598 MS cases and 38,887 controls of European ancestry from Kaiser Permanente Northern California, Swedish MS studies, and the UK Biobank were included. We estimated the association between each VDR-BV GIV and MS. Significant interaction between a VDR-BV GIV and a GIV for serum 25OH(D) was evidence for a causal association between VDR-BVs and MS unbiased by pleiotropy. We observed evidence for associations between two VDR-BVs (rs2881514, rs2531804) and MS after correction for multiple tests. There was evidence of interaction between rs2881514 and a 25(OH)D GIV, providing evidence of a causal association between rs2881514 and MS. This study is the first to demonstrate evidence that variation in VDR binding at a locus contributes to MS risk. Our results are relevant to other autoimmune diseases in which vitamin D plays a role.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Alelos , Estudo de Associação Genômica Ampla , Vitamina D/metabolismo , Calcitriol , Polimorfismo de Nucleotídeo Único
11.
Best Pract Res Clin Endocrinol Metab ; 38(2): 101876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365463

RESUMO

Vitamin D is mainly produced in the skin (cholecalciferol) by sun exposure while a fraction of it is obtained from dietary sources (ergocalciferol). Vitamin D is further processed to 25-hydroxyvitamin D and 1,25-dihydroxy vitamin D (calcitriol) in the liver and kidneys, respectively. Calcitriol is the active form which mediates the actions of vitamin D via vitamin D receptor (VDR) which is present ubiquitously. Defect at any level in this pathway leads to vitamin D deficient or resistant rickets. Nutritional vitamin D deficiency is the leading cause of rickets and osteomalacia worldwide and responds well to vitamin D supplementation. Inherited disorders of vitamin D metabolism (vitamin D-dependent rickets, VDDR) account for a small proportion of calcipenic rickets/osteomalacia. Defective 1α hydroxylation of vitamin D, 25 hydroxylation of vitamin D, and vitamin D receptor result in VDDR1A, VDDR1B and VDDR2A, respectively whereas defective binding of vitamin D to vitamin D response element due to overexpression of heterogeneous nuclear ribonucleoprotein and accelerated vitamin D metabolism cause VDDR2B and VDDR3, respectively. Impaired dietary calcium absorption and consequent calcium deficiency increases parathyroid hormone in these disorders resulting in phosphaturia and hypophosphatemia. Hypophosphatemia is a common feature of all these disorders, though not a sine-qua-non and leads to hypomineralisation of the bone and myopathy. Improvement in hypophosphatemia is one of the earliest markers of response to vitamin D supplementation in nutritional rickets/osteomalacia and the lack of such a response should prompt evaluation for inherited forms of rickets/osteomalacia.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Osteomalacia , Raquitismo , Deficiência de Vitamina D , Humanos , Calcitriol , Receptores de Calcitriol , Osteomalacia/tratamento farmacológico , Osteomalacia/etiologia , Osteomalacia/metabolismo , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Raquitismo/tratamento farmacológico , Raquitismo/etiologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , Vitaminas
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402945

RESUMO

This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17ß-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.


Assuntos
Ovário , Vitamina D , Animais , Feminino , Vitamina D/metabolismo , Ovário/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Arvicolinae/genética , Arvicolinae/metabolismo , Vitaminas , Células da Granulosa/metabolismo , RNA Mensageiro/genética
13.
Eur J Pharmacol ; 969: 176303, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211715

RESUMO

Eldecalcitol (ED-71), a novel active form of vitamin D, shows potential in treating osteoporosis. However, its underlying mechanisms of action remain to be determined. This study aimed to investigate the effect of ED-71 on bone regeneration and to illustrate its mode of action. The in-vitro model was developed using rat primary osteoblasts cultured under high-glucose conditions, and these cells were treated with ED-71. Additionally, an in vivo model of cranial bone defects was established in type 2 diabetic rats, and ED-71 was administered by gavage. The results demonstrated that ED-71 prevented osteoblast cell death, enhanced rat primary osteoblasts' osteogenic capacity, and attenuated the overexpression of hypoxia-inducible factor 1α (HIF1α) induced by high glucose levels. Furthermore, ED-71 increased glutathione peroxidase 4 (GPX4) levels and inhibited ferroptosis in response to hyperglycemic stimulation. Notably, interference with the HIF1α activator and ferroptosis activator Erastin significantly reduced the therapeutic effects of edetate osteolysis. These findings were further tested in vivo experiments. These results suggest that ED-71 activates the HIF1α pathway in vivo and in vitro, effectively relieving the ferroptosis induced by high glucose. Significantly, ED-71 may improve osteogenic disorders caused by diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Vitamina D/análogos & derivados , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Vitamina D/metabolismo , Osteoblastos/metabolismo , Regeneração Óssea , Glucose/metabolismo
14.
Exp Mol Med ; 56(1): 142-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172593

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease. Despite intensive research, considerable information on NAFLD development remains elusive. In this study, we examined the effects of vitamin D on age-induced NAFLD, especially in connection with mitochondrial abnormalities. We observed the prevention of NAFLD in 22-month-old C57BL/6 mice fed a vitamin D3-supplemented (20,000 IU/kg) diet compared with mice fed a control (1000 IU/kg) diet. We evaluated whether vitamin D3 supplementation enhanced mitochondrial functions. We found that the level of mitochondrial contact site and cristae organizing system (MICOS) 60 (Mic60) level was reduced in aged mice, and this reduction was specifically restored by vitamin D3. In addition, depletion of Immt, the human gene encoding the Mic60 protein, induced changes in gene expression patterns that led to fat accumulation in both HepG2 and primary hepatocytes, and these alterations were effectively prevented by vitamin D3. In addition, silencing of the vitamin D receptor (VDR) decreased the Mic60 levels, which were recovered by vitamin D treatment. To assess whether VDR directly regulates Mic60 levels, we performed chromatin immunoprecipitation and reporter gene analysis. We discovered that VDR directly binds to the Immt 5' promoter region spanning positions -3157 to -2323 and thereby upregulates Mic60. Our study provides the first demonstration that a reduction in Mic60 levels due to aging may be one of the mechanisms underlying the development of aging-associated NAFLD. In addition, vitamin D3 could positively regulate Mic60 expression, and this may be one of the important mechanisms by which vitamin D could ameliorate age-induced NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Lactente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Vitamina D/metabolismo , 60482 , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/metabolismo
15.
Drug Dev Ind Pharm ; 50(2): 89-101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38175566

RESUMO

OBJECTIVE: Vitamin D (a prohormone) is an important micronutrient required by the body for skeletal homeostasis and a range of non-skeletal actions. Calcitriol, the active form of vitamin D, regulates a variety of cellular and metabolic processes through both genomic and nongenomic pathways. Often prescribed for treating rickets and osteoporosis, vitamin D deficiency can exacerbate various other medical conditions. SIGNIFICANCE, METHODS, AND RESULTS: Despite its multifunctional uses, the sensitivity of vitamin D makes formulating an efficient drug delivery system a challenging task, which is further complicated by its poor aqueous solubility. Enhancing the oral absorption of vitamin D is vital in utilizing its full efficacy. Recent developments in encapsulation and nanotechnology have shown promising results in overcoming these constraints. CONCLUSION: This review thus offers an insight to adequately comprehend the mechanistic pharmacology of vitamin D, its pathophysiological role, and justification of its medical indications, along with the benefits of utilizing nanotechnology for vitamin D delivery.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Vitamina D/metabolismo , Vitamina D/uso terapêutico , Alimentos Fortificados , Calcitriol/fisiologia , Calcitriol/uso terapêutico , Vitaminas , Deficiência de Vitamina D/tratamento farmacológico
16.
Animal ; 18(2): 101049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215677

RESUMO

Our understanding of metabolic alterations triggered by heat stress is incomplete, which limits the designing of nutritional strategies to mitigate negative productive and health effects. Thus, this study aimed to explore the metabolic responses of heat-stressed dairy cows to dietary supplementation with vitamin D3/Ca and vitamin E/Se. Twelve multiparous Holstein cows were enrolled in a split-plot Latin square design with two distinct vitamin E/Se supplementation levels, either at a low (ESe-, n = 6, 11.1 IU/kg vitamin E and 0.55 mg/kg Se) or a high dose (ESe+, n = 6 223 IU/kg vitamin E and 1.8 mg/kg Se) as the main plot. Treatment subplots, arranged in a replicated 3 × 3 Latin square design, comprised heat challenge (Temperature Humidity Index, THI: 72.0-82.0) supplemented with different levels of vitamin D3/Ca: either low (HS/DCa-, 1 012 IU/kg and 0.73%, respectively) or high (HS/DCa+, 3 764 IU/kg and 0.97%, respectively), and a pair-fed control group in thermoneutrality (THI = 61.0-64.0) receiving the low dose of vitamin D3/Ca (TN). The liquid chromatography-mass spectrometry-based metabolome profile was determined in blood plasma and milk sampled at the beginning (day 0) and end (day 14) of each experimental period. The results were analyzed for the effect of (1) TN vs. HS/ESe-/DCa-, and (2) the vitamin E/Se and vitamin D3/Ca supplementation. No group or group × day effects were detected in the plasma metabolome (false discovery rate, FDR > 0.05), except for triglyceride 52:2 being higher (FDR = 0.03) on day 0 than 14. Taurine, creatinine and butyryl-carnitine showed group × day interactions in the milk metabolome (FDR ≤ 0.05) as creatinine (+22%) and butyryl-carnitine (+190%) were increased (P < 0.01) on day 14, and taurine was decreased (-65%, P < 0.01) on day 14 in the heat stress (HS) cows, compared with day 0. Most compounds were unaffected by vitamin E/Se or vitamin D3/Ca supplementation level or their interaction (FDR > 0.05) in plasma and milk, except for milk alanine which was lower (-69%, FDR = 0.03) in the E/Se+ groups, compared with E/Se-. Our results indicated that HS triggered more prominent changes in the milk than in the plasma metabolome, with consistent results in milk suggesting increased muscle catabolism, as reflected by increased creatinine, alanine and citrulline levels. Supplementing with high levels of vitamin E/Se or vitamin D3/Ca or their combination did not appear to affect the metabolic remodeling triggered by HS.


Assuntos
Lactação , Leite , Feminino , Bovinos , Animais , Leite/metabolismo , Creatinina/análise , Creatinina/metabolismo , Creatinina/farmacologia , Dieta/veterinária , Temperatura Alta , Suplementos Nutricionais/análise , Resposta ao Choque Térmico , Vitamina E , Carnitina/metabolismo , Alanina/análise , Alanina/metabolismo , Alanina/farmacologia , Aminoácidos/metabolismo , Vitamina D/metabolismo
17.
Curr Diabetes Rev ; 20(1): e310323215281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37005543

RESUMO

About 50.8 million people were diagnosed with diabetes in 2011; the count has increased by 10 million in the last five years. Type-1 diabetes could occur at any age, but predominantly in children and young adults. The risk of developing type II diabetes mellitus in the offspring of parents with DM II is 40% if one parent has DM II and approaches 70% if both parents have DM II. The process of developing diabetes from normal glucose tolerance is continuous, with insulin resistance being the first stage. As prediabetes progresses slowly to DM II, it may take approximately 15-20 years for an individual to become diabetic. This progression can be prevented or delayed by taking some precautions and making some lifestyle amendments, e.g., reducing weight by 5-7% of total body weight if obese, etc. Retinoblastoma protein is one of the pocket proteins that act as crucial gatekeepers during the G1/S transition in the cell cycle. A loss or defect in single- cell cycle activators (especially CDK4 and CDK6) leads to cell failure. In diabetic or stress conditions, p53 becomes a transcription factor, resulting in the transactivation of CKIs, which leads to cell cycle arrest, cell senescence, or cell apoptosis. Vitamin D affects insulin sensitivity by increasing insulin receptors or the sensitivity of insulin receptors to insulin. It also affects peroxisome proliferator-activated receptors (PPAR) and extracellular calcium. These influence both insulin resistance and secretion mechanisms, undertaking the pathogenesis of type II diabetes. The study confines a marked decrement in the levels of random and fasting blood glucose levels upon regular vitamin D intake, along with a significant elevation of retinoblastoma protein levels in the circulatory system. The most critical risk factor for the occurrence of the condition came out to be family history, showing that patients with first-degree relatives with diabetes are more susceptible. Factors such as physical inactivity or comorbid conditions further aggravate the risk of developing the disease. The increase in pRB levels caused by vitamin D therapy in prediabetic patients directly influences blood glucose levels. pRB is supposed to play a role in maintaining blood sugar levels. The results of this study could be used for further studies to evaluate the role of vitamin D and pRB in regeneration therapy for beta cells in prediabetics.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Vitamina D , Criança , Humanos , Adulto Jovem , Glicemia/metabolismo , Insulina/metabolismo , Receptor de Insulina , Proteína do Retinoblastoma/efeitos dos fármacos , Vitamina D/metabolismo , Vitaminas
18.
Poult Sci ; 103(2): 103291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043407

RESUMO

Our study aimed to investigate the effects of different dietary vitamin D (VD) combinations during the grower (1-32 d of age) and feed restriction (33-52 d of age) phases on growth performance. We also evaluated sternal morphology, mineralization, and related genes expression of bone metabolism as well as absorption of calcium and phosphorous in duodenal mucosa and kidney in Pekin ducks. During the grower phase, we used 2 VD regimes (Group A: 3,160 IU/kg VD3; Group B: 400 IU/kg VD3 + 69 µg/kg 25-OH-D3). Each dietary treatment had 50 replicate pens of 10 ducks per pen. During the feed restriction phase, 30 replicate pens selected from Group A and Group B, repetitively, were redivided into 5 different dietary VD regimes to form a 2 × 5 experimental design. Each group consisted of 6 replicates, each with 10 ducks. During the feed restriction phase, we evaluated 5 different dietary VD combinations were as follows: T1: 2,000 IU/kg VD3 ; T2: 5,000 IU/kg VD3; T3: 3,620 IU/kg VD3 + 34.5 µg/kg 25-OH-D3; T4: 2,240 IU/kg VD3 + 69 µg/kg 25-OH-D3; T5: 1,800 IU/kg VD3 + 80 µg/kg 25-OH-D3). Results showed that Group B combinations with T5 had a better growth performance and breast meat deposition (P < 0.1). Regardless of 5 dietary VD regimes during the feed restriction phase, Group B significantly increased (P < 0.05) 52 d sternal depth and tended to increase (P < 0.1) 52 d sternal defatted weight, ash content, and phosphate (P) content of ducks. A significant interactive effect (P < 0.05) was observed on the mRNA abundance of DMP1 and Sost1 as well as RANKL/OPG in sternum and of VDR in duodenal mucosa of ducks at 52 d of age between dietary VD combinations during 2 phases. These results indicated that dietary VD regimes during the grower phase could affect the effectiveness of dietary VD regimes during the feed restriction phases; Dietary VD combinations of both phases could affect the genes expression of bone formation and the absorption as well as reabsorption of calcium and phosphorus in duodenum and kidney.


Assuntos
Suplementos Nutricionais , Patos , Animais , Vitamina D/metabolismo , Cálcio/metabolismo , Galinhas , Dieta/veterinária , Vitaminas/metabolismo , Cálcio da Dieta/metabolismo , Fósforo/metabolismo , Esterno , Ração Animal/análise
19.
J Cachexia Sarcopenia Muscle ; 15(1): 67-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041597

RESUMO

BACKGROUND: Mice lacking vitamin D receptor (VDR) exhibit a glycogen storage disorder, disrupting carbohydrate utilization in muscle. Here, we asked if the defective carbohydrate metabolism alters the fat utilization by the skeletal muscles of vdr-/- mice. METHODS: To check the effect of high-fat-containing diets on muscle mass and metabolism of vdr-/- mice, we subjected them to two different milk fat-based diets (milk fat diet with 60% of energy from milk fat and milk-based diet [MBD] with 37% of energy from milk fat) and lard-based high-fat diet (HFD) containing 60% of energy from lard fat. Skeletal muscles and pancreas from these mice were analysed using RNA sequencing, quantitative reverse transcription polymerase chain reaction and western blot to understand the changes in signalling and metabolic pathways. Microscopic analyses of cryosections stained with haematoxylin and eosin, BODIPY, succinate dehydrogenase and periodic acid-Schiff reagent were performed to understand changes in morphology and metabolism of muscle fibres and pancreatic islets. RESULTS: Transcriptomic analyses showed that the skeletal muscles of vdr-/- mice exhibit upregulation of the fatty acid oxidation pathways, suggesting a shift towards increased lipid utilization even in a carbohydrate-enriched regular chow diet (chow). Two different milk fat-enriched diets restored body weight (12.01 ± 0.33 g in chow vs. 17.99 ± 0.62 g in MBD) and muscle weights (38.58 ± 3.84 mg in chow vs. 110.72 ± 1.96 mg in MBD for gastrocnemius [GAS]) of vdr-/- mice. Muscle ATP levels (0.56 ± 0.18 µmol in chow vs. 1.48 ± 0.08 µmol in MBD) and protein synthesis (0.25 ± 0.04 A.U. in chow vs. 2.02 ± 0.06 A.U. in MBD) were upregulated by MBD. However, despite increasing muscle energy levels, HFD failed to restore the muscle mass and cross-sectional area to that of wild-type (WT) mice (104.95 ± 2.6 mg for WT mice on chow vs. 77.26 ± 1.7 mg for vdr-/- mice on HFD for GAS). Moreover, HFD disrupted glucose homeostasis in vdr-/- mice, while MBD restored it. We further analysed insulin response and pancreatic insulin levels of these mice to show that HFD led to reduced insulin levels in pancreatic beta cells of vdr-/- mice (mean intensity of 1.5 × 10-8 for WT mice on chow vs. 4.3 × 10-9 for vdr-/- mice on HFD). At the same time, MBD restored glucose-stimulated pancreatic insulin response (mean intensity of 9.2 × 10-9 ). CONCLUSIONS: Skeletal muscles of vdr-/- mice are predisposed to utilize fatty acids as their primary energy source to circumvent their defective carbohydrate utilization. Thus, HFDs could restore energy levels in the skeletal muscles of vdr-/- mice. This study reveals that when mice are subjected to a lard-based HFD, VDR signalling is essential for maintaining insulin levels in pancreatic islets. Our data show a critical role of VDR in muscle metabolic flexibility and pancreatic insulin response.


Assuntos
Músculo Esquelético , Vitamina D , Camundongos , Animais , Vitamina D/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Vitaminas , Glucose/metabolismo , Estresse Oxidativo , Carboidratos
20.
Free Radic Biol Med ; 210: 286-303, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040270

RESUMO

Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.


Assuntos
Carcinoma de Células Escamosas , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Calcitriol/farmacologia , Calcitriol/metabolismo , Queratinócitos/metabolismo , Vitaminas/farmacologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Genômica , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...